@@ -232,11 +232,7 @@ Get rows from a table's data:
232232 >>> client = bigquery.Client()
233233 >>> dataset = client.dataset(' dataset_name' )
234234 >>> table = dataset.table(name = ' person_ages' )
235- >>> rows, next_page_token = table.data(max_results = 100 ) # API request
236- >>> rows.csv.headers
237- ('full_name', 'age')
238- >>> list (rows.csv)
239- [('Abel Adamson', 27), ('Beverly Bowman', 33)]
235+ >>> rows, next_page_token = table.fetch_data(max_results = 100 ) # API request
240236 >>> for row in rows:
241237 ... for field, value in zip (table.schema, row):
242238 ... do_something(field, value)
@@ -283,20 +279,22 @@ Run a query which can be expected to complete within bounded time:
283279 >>> query = """ \
284280 SELECT count(*) AS age_count FROM dataset_name.person_ages
285281 """
286- >>> results = client.run_sync_query(query, timeout_ms = 1000 )
282+ >>> job = client.run_sync_query(query)
283+ >>> job.timeout_ms = 1000
284+ >>> job.run() # API request
287285 >>> retry_count = 100
288- >>> while retry_count > 0 and not results.job_complete :
286+ >>> while retry_count > 0 and not job.complete :
289287 ... retry_count -= 1
290288 ... time.sleep(10 )
291- ... results .reload() # API request
292- >>> results .schema
289+ ... job .reload() # API request
290+ >>> job .schema
293291 [{'name': 'age_count', 'type': 'integer', 'mode': 'nullable'}]
294- >>> results .rows
292+ >>> job .rows
295293 [(15,)]
296294
297295.. note ::
298296
299- If the query takes longer than the timeout allowed, ``results.job_complete ``
297+ If the query takes longer than the timeout allowed, ``job.complete ``
300298 will be ``False ``: we therefore poll until it is completed.
301299
302300Querying data (asynchronous)
@@ -315,9 +313,9 @@ Background a query, loading the results into a table:
315313 """
316314 >>> dataset = client.dataset(' dataset_name' )
317315 >>> table = dataset.table(name = ' person_ages' )
318- >>> job = client.run_async_query(query,
319- ... destination = table,
320- ... write_disposition= ' truncate' )
316+ >>> job = client.run_async_query(' fullname-age- query-job ' , query)
317+ >>> job.destination_table = table
318+ >>> job. write_disposition= ' truncate'
321319 >>> job.job_id
322320 'e3344fba-09df-4ae0-8337-fddee34b3840'
323321 >>> job.type
@@ -361,31 +359,22 @@ Poll until the job is complete:
361359Inserting data (synchronous)
362360~~~~~~~~~~~~~~~~~~~~~~~~~~~~
363361
364- Load data synchronously from a local CSV file into a new table. First,
365- create the job locally:
362+ Load data synchronously from a local CSV file into a new table:
366363
367364.. doctest ::
368365
366+ >>> import csv
369367 >>> from gcloud import bigquery
368+ >>> from gcloud.bigquery import SchemaField
370369 >>> client = bigquery.Client()
371370 >>> table = dataset.table(name = ' person_ages' )
371+ >>> table.schema = [
372+ ... SchemaField(name = ' full_name' , type = ' string' , mode = ' required' ),
373+ ... SchemaField(name = ' age' , type = ' int' , mode = ' required)]
372374 >>> with open (' /path/to/person_ages.csv' , ' rb' ) as file_obj:
373- ... job = table.load_from_file(
374- ... file_obj,
375- ... source_format= ' CSV' ,
376- ... skip_leading_rows= 1
377- ... write_disposition= ' truncate' ,
378- ... ) # API request
379- >>> job.job_id
380- 'e3344fba-09df-4ae0-8337-fddee34b3840'
381- >>> job.type
382- 'load'
383- >>> job.created
384- datetime.datetime(2015, 7, 23, 9, 30, 20, 268260, tzinfo=<UTC>)
385- >>> job.state
386- 'done'
387- >>> job.ended
388- datetime.datetime(2015, 7, 23, 9, 30, 21, 334792, tzinfo=<UTC>)
375+ ... reader = csv.reader(file_obj)
376+ ... rows = list (reader)
377+ >>> table.insert_data(rows) # API request
389378
390379Inserting data (asynchronous)
391380~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -397,13 +386,17 @@ the job locally:
397386.. doctest ::
398387
399388 >>> from gcloud import bigquery
389+ >>> from gcloud.bigquery import SchemaField
400390 >>> client = bigquery.Client()
401391 >>> table = dataset.table(name = ' person_ages' )
402- >>> job = table.load_from_storage(bucket_name = ' bucket-name' ,
403- ... object_name_glob= ' object-prefix*' ,
404- ... source_format= ' CSV' ,
405- ... skip_leading_rows= 1 ,
406- ... write_disposition= ' truncate' )
392+ >>> table.schema = [
393+ ... SchemaField(name = ' full_name' , type = ' string' , mode = ' required' ),
394+ ... SchemaField(name = ' age' , type = ' int' , mode = ' required)]
395+ >>> job = client.load_table_from_storage(
396+ ... ' load-from-storage-job' , table, ' gs://bucket-name/object-prefix*' )
397+ >>> job.source_format = ' CSV'
398+ >>> job.skip_leading_rows = 1 # count of skipped header rows
399+ >>> job.write_disposition = ' truncate'
407400 >>> job.job_id
408401 'e3344fba-09df-4ae0-8337-fddee34b3840'
409402 >>> job.type
@@ -423,7 +416,7 @@ Then, begin executing the job on the server:
423416
424417.. doctest ::
425418
426- >>> job.submit () # API call
419+ >>> job.begin () # API call
427420 >>> job.created
428421 datetime.datetime(2015, 7, 23, 9, 30, 20, 268260, tzinfo=<UTC>)
429422 >>> job.state
@@ -455,11 +448,12 @@ located on Google Cloud Storage. First, create the job locally:
455448 >>> from gcloud import bigquery
456449 >>> client = bigquery.Client()
457450 >>> table = dataset.table(name = ' person_ages' )
458- >>> job = table.export_to_storage(bucket_name = ' bucket-name' ,
459- ... object_name_glob= ' export-prefix*.csv' ,
460- ... destination_format= ' CSV' ,
461- ... print_header= 1 ,
462- ... write_disposition= ' truncate' )
451+ >>> job = client.extract_table_to_storage(
452+ ... ' extract-person-ages-job' , table,
453+ ... ' gs://bucket-name/export-prefix*.csv' )
454+ ... job.destination_format = ' CSV'
455+ ... job.print_header = True
456+ ... job.write_disposition = ' truncate'
463457 >>> job.job_id
464458 'e3344fba-09df-4ae0-8337-fddee34b3840'
465459 >>> job.type
@@ -479,7 +473,7 @@ Then, begin executing the job on the server:
479473
480474.. doctest ::
481475
482- >>> job.submit () # API call
476+ >>> job.begin () # API call
483477 >>> job.created
484478 datetime.datetime(2015, 7, 23, 9, 30, 20, 268260, tzinfo=<UTC>)
485479 >>> job.state
@@ -512,7 +506,8 @@ First, create the job locally:
512506 >>> client = bigquery.Client()
513507 >>> source_table = dataset.table(name = ' person_ages' )
514508 >>> destination_table = dataset.table(name = ' person_ages_copy' )
515- >>> job = source_table.copy_to(destination_table) # API request
509+ >>> job = client.copy_table(
510+ ... ' copy-table-job' , destination_table, source_table)
516511 >>> job.job_id
517512 'e3344fba-09df-4ae0-8337-fddee34b3840'
518513 >>> job.type
@@ -532,7 +527,7 @@ Then, begin executing the job on the server:
532527
533528.. doctest ::
534529
535- >>> job.submit () # API call
530+ >>> job.begin () # API call
536531 >>> job.created
537532 datetime.datetime(2015, 7, 23, 9, 30, 20, 268260, tzinfo=<UTC>)
538533 >>> job.state
0 commit comments