Skip to content
Merged
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 87 additions & 0 deletions maths/rkf45.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
from collections.abc import Callable

import numpy as np


class RangeError(Exception):
"Will be raised when initial x is greater than or equal to final x"


def runge_futta_fehlberg_45(
ode: Callable,
y0: float,
x0: float,
step_size: float,
xn: float,
) -> np.ndarray:
"""
Solve ODE using Runge-Kutta-Fehlberg Method (rkf45) of order 5.

Reference: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method

args:
ode (callable): Ordinary Differential Equation as function of x and y.
y0 (float) : Initial value of y.
x0 (float) : Initial value of x.
step_size (float) : Increament value of x (step-size).
xn (float) : Final value of x.

Returns:
np.ndarray: Solution of y at each nodal point

#excact value of y[1] is tan(0.2) = 0.2027100355086
>>> def f(x,y):
... return 1+y**2
>>> y=rkf45(f,0,0,0.2,1)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
>>> y=rkf45(f,0,0,0.2,1)
>>> y=rkf45(f, 0, 0, 0.2, 1)

>>> y[1]
0.2027100937470787
"""
if x0 >= xn:
raise RangeError("Final value of x should be greater than initial value of x.")

n = int((xn - x0) / step_size)
y = np.zeros(
(n + 1),
)
x = np.zeros(n + 1)
y[0] = y0
x[0] = x0
for i in range(n):
k1 = step_size * ode(x[i], y[i])
k2 = step_size * ode(x[i] + step_size / 4, y[i] + k1 / 4)
k3 = step_size * ode(
x[i] + (3 / 8) * step_size, y[i] + (3 / 32) * k1 + (9 / 32) * k2
)
k4 = step_size * ode(
x[i] + (12 / 13) * step_size,
y[i] + (1932 / 2197) * k1 - (7200 / 2197) * k2 + (7296 / 2197) * k3,
)
k5 = step_size * ode(
x[i] + step_size,
y[i] + (439 / 216) * k1 - 8 * k2 + (3680 / 513) * k3 - (845 / 4104) * k4,
)
k6 = step_size * ode(
x[i] + step_size / 2,
y[i]
- (8 / 27) * k1
+ 2 * k2
- (3544 / 2565) * k3
+ (1859 / 4104) * k4
- (11 / 40) * k5,
)
y[i + 1] = (
y[i]
+ (16 / 135) * k1
+ (6656 / 12825) * k3
+ (28561 / 56430) * k4
- (9 / 50) * k5
+ (2 / 55) * k6
)
x[i + 1] = step_size + x[i]
return y


if __name__ == "__main__":
import doctest

doctest.testmod()