-
Notifications
You must be signed in to change notification settings - Fork 14.8k
Description
Name and Version
llama-b7446-bin-win-vulkan-x64
Operating systems
Windows
GGML backends
Vulkan
Hardware
Nvidia RTX 4090
Models
GLM-4.6V-Flash-Q4_K_M.gguf and mmproj-GLM-4.6V-Flash-Q8_0
Official GGML org quants from https://huggingface.co/ggml-org/GLM-4.6V-Flash-GGUF/tree/main
Problem description & steps to reproduce
The model works perfectly fine on CPU, but produces extremely degraded output on Vulkan, as of official llama-b7446-bin-win-vulkan-x64. The degradation seems to be linked to the size/dimensions of the input image, on some it is decent, on others extremely poor.
I have attached an image for your testing. Please note that the dimensions affect this behavior, this is a 768x768 image.
If I add a simple --no-mmproj-offload then everything runs fine.
Thank you for your consideration @ngxson @jeffbolznv @0cc4m
First Bad Commit
Since added in #18042
Relevant log output
Case 1: with mmproj on GPU in Vulkan
C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64>llama-mtmd-cli.exe -m c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf --mmproj c:\Users\user\Desktop\mmproj-GLM-4.6V-Flash-Q8_0.gguf --image c:\Users\user\Desktop\benchy.jpg -p "what do you see?"
load_backend: loaded RPC backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = Intel(R) RaptorLake-S Mobile Graphics Controller (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
ggml_vulkan: 1 = NVIDIA GeForce RTX 4090 Laptop GPU (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
load_backend: loaded Vulkan backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-vulkan.dll
load_backend: loaded CPU backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-cpu-haswell.dll
build: 7446 (5c0d18881) with Clang 19.1.5 for Windows x86_64
common_init_result: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)
llama_params_fit_impl: projected to use 11068 MiB of device memory vs. 16050 MiB of free device memory
llama_params_fit_impl: will leave 4210 >= 1024 MiB of free device memory, no changes needed
llama_params_fit: successfully fit params to free device memory
llama_params_fit: fitting params to free memory took 0.71 seconds
llama_model_load_from_file_impl: using device Vulkan1 (NVIDIA GeForce RTX 4090 Laptop GPU) (0000:01:00.0) - 15278 MiB free
llama_model_loader: loaded meta data with 32 key-value pairs and 523 tensors from c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = glm4
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.sampling.top_k i32 = 2
llama_model_loader: - kv 3: general.sampling.top_p f32 = 0.600000
llama_model_loader: - kv 4: general.sampling.temp f32 = 0.800000
llama_model_loader: - kv 5: general.size_label str = 9.4B
llama_model_loader: - kv 6: general.license str = mit
llama_model_loader: - kv 7: general.tags arr[str,1] = ["image-text-to-text"]
llama_model_loader: - kv 8: general.languages arr[str,2] = ["zh", "en"]
llama_model_loader: - kv 9: glm4.block_count u32 = 40
llama_model_loader: - kv 10: glm4.context_length u32 = 131072
llama_model_loader: - kv 11: glm4.embedding_length u32 = 4096
llama_model_loader: - kv 12: glm4.feed_forward_length u32 = 13696
llama_model_loader: - kv 13: glm4.attention.head_count u32 = 32
llama_model_loader: - kv 14: glm4.attention.head_count_kv u32 = 2
llama_model_loader: - kv 15: glm4.rope.dimension_sections arr[i32,4] = [8, 12, 12, 0]
llama_model_loader: - kv 16: glm4.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 17: glm4.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: glm4.rope.dimension_count u32 = 64
llama_model_loader: - kv 19: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 20: tokenizer.ggml.pre str = glm4
llama_model_loader: - kv 21: tokenizer.ggml.tokens arr[str,151552] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,151552] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 23: tokenizer.ggml.merges arr[str,318088] = ["─á ─á", "─á ─á─á─á", "─á─á ─á─á", "...
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 151329
llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 151329
llama_model_loader: - kv 26: tokenizer.ggml.eot_token_id u32 = 151336
llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 151329
llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 151329
llama_model_loader: - kv 29: tokenizer.chat_template str = [gMASK]<sop>\n{%- if tools -%}\n<|syste...
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - kv 31: general.file_type u32 = 15
llama_model_loader: - type f32: 281 tensors
llama_model_loader: - type q5_0: 20 tensors
llama_model_loader: - type q8_0: 20 tensors
llama_model_loader: - type q4_K: 181 tensors
llama_model_loader: - type q6_K: 21 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 5.73 GiB (5.24 BPW)
load: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect
←[0mload: printing all EOG tokens:
load: - 151329 ('<|endoftext|>')
load: - 151336 ('<|user|>')
load: special tokens cache size = 36
load: token to piece cache size = 0.9713 MB
print_info: arch = glm4
print_info: vocab_only = 0
print_info: no_alloc = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 4096
print_info: n_embd_inp = 4096
print_info: n_layer = 40
print_info: n_head = 32
print_info: n_head_kv = 2
print_info: n_rot = 64
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 16
print_info: n_embd_k_gqa = 256
print_info: n_embd_v_gqa = 256
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 13696
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 8
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_yarn_log_mul= 0.0000
print_info: rope_finetuned = unknown
print_info: mrope sections = [8, 12, 12, 0]
print_info: model type = 9B
print_info: model params = 9.40 B
print_info: general.name = n/a
print_info: vocab type = BPE
print_info: n_vocab = 151552
print_info: n_merges = 318088
print_info: BOS token = 151329 '<|endoftext|>'
print_info: EOS token = 151329 '<|endoftext|>'
print_info: EOT token = 151336 '<|user|>'
print_info: UNK token = 151329 '<|endoftext|>'
print_info: PAD token = 151329 '<|endoftext|>'
print_info: LF token = 198 '─è'
print_info: FIM PRE token = 151347 '<|code_prefix|>'
print_info: FIM SUF token = 151349 '<|code_suffix|>'
print_info: FIM MID token = 151348 '<|code_middle|>'
print_info: EOG token = 151329 '<|endoftext|>'
print_info: EOG token = 151336 '<|user|>'
print_info: max token length = 1024
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 40 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 41/41 layers to GPU
load_tensors: CPU_Mapped model buffer size = 333.00 MiB
load_tensors: Vulkan1 model buffer size = 5539.00 MiB
.........................................................................................
common_init_result: added <|endoftext|> logit bias = -inf
common_init_result: added <|user|> logit bias = -inf
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 131072
llama_context: n_ctx_seq = 131072
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 500000.0
llama_context: freq_scale = 1
llama_context: Vulkan_Host output buffer size = 0.58 MiB
llama_kv_cache: Vulkan1 KV buffer size = 5120.00 MiB
llama_kv_cache: size = 5120.00 MiB (131072 cells, 40 layers, 1/1 seqs), K (f16): 2560.00 MiB, V (f16): 2560.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: Vulkan1 compute buffer size = 409.02 MiB
llama_context: Vulkan_Host compute buffer size = 264.02 MiB
llama_context: graph nodes = 1487
llama_context: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
←[0mmtmd_cli_context: chat template example:
[gMASK]<sop><|system|>
You are a helpful assistant<|user|>
Hello<|assistant|>
Hi there<|user|>
How are you?<|assistant|>
clip_model_loader: model name:
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 182
clip_model_loader: n_kv: 24
clip_model_loader: has vision encoder
clip_ctx: CLIP using Vulkan1 backend
load_hparams: projector: glm4v
load_hparams: n_embd: 1536
load_hparams: n_head: 12
load_hparams: n_ff: 13696
load_hparams: n_layer: 24
load_hparams: ffn_op: silu
load_hparams: projection_dim: 4096
--- vision hparams ---
load_hparams: image_size: 336
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 0
load_hparams: n_merge: 2
load_hparams: n_wa_pattern: 0
load_hparams: image_min_pixels: 6272
load_hparams: image_max_pixels: 3211264
load_hparams: model size: 934.64 MiB
load_hparams: metadata size: 0.06 MiB
warmup: warmup with image size = 1288 x 1288
alloc_compute_meta: Vulkan1 compute buffer size = 515.05 MiB
alloc_compute_meta: CPU compute buffer size = 19.11 MiB
alloc_compute_meta: graph splits = 1, nodes = 632
warmup: flash attention is enabled
main: loading model: c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf
WARN: This is an experimental CLI for testing multimodal capability.
←[0m For normal use cases, please use the standard llama-cli
←[0mencoding image slice...
image slice encoded in 128 ms
decoding image batch 1/1, n_tokens_batch = 729
image decoded (batch 1/1) in 157 ms
<think>Got it, let's see. The user is asking "what do you see?" and there's an image, but maybe the image is a simple one? Wait, looking at the input, the image might be a star or something? Wait, no, the user provided an image, but in the text, maybe it's a star-like shape? Wait, the image descriptionΓÇömaybe it's a star or a snowflake? Let me think. The question is "what do you see?" So I need to describe what's in the image.
Looking at the image (assuming it's a star or a triangular shape with points, maybe a snowflake or a star). Wait, the image might be a star with six points, like a snowflake or a star symbol. So I should describe that.
So the answer would be something like "I see a star-shaped figure, possibly a snowflake or a six-pointed star, with symmetrical points." Or more precisely, looking at the image, it's a star (like a snowflake) with triangular sections, maybe a stylized star. Let me check the image again. The image is a star with six points, each point is a triangle, forming a star shape. So I can describe that.
So the response should be: I see a star - shaped (or snowflake - like) figure with multiple points, likely a stylized star or snowflake design.</think>
<|begin_of_box|>I see a star - shaped (or snowflake - like) figure with multiple points, which appears to be a stylized star or snowflake design.<|end_of_box|>
llama_perf_context_print: load time = 5753.35 ms
llama_perf_context_print: prompt eval time = 526.60 ms / 742 tokens ( 0.71 ms per token, 1409.03 tokens per second)
llama_perf_context_print: eval time = 4463.51 ms / 326 runs ( 13.69 ms per token, 73.04 tokens per second)
llama_perf_context_print: total time = 5855.37 ms / 1068 tokens
llama_perf_context_print: graphs reused = 0Case 2: with mmproj on CPU in Vulkan
C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64>llama-mtmd-cli.exe -m c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf --mmproj c:\Users\user\Desktop\mmproj-GLM-4.6V-Flash-Q8_0.gguf --image c:\Users\user\Desktop\benchy.jpg -p "what do you see?" --no-mmproj-offload
load_backend: loaded RPC backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = Intel(R) RaptorLake-S Mobile Graphics Controller (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
ggml_vulkan: 1 = NVIDIA GeForce RTX 4090 Laptop GPU (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
load_backend: loaded Vulkan backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-vulkan.dll
load_backend: loaded CPU backend from C:\Users\user\Desktop\llama-b7446-bin-win-vulkan-x64\ggml-cpu-haswell.dll
build: 7446 (5c0d18881) with Clang 19.1.5 for Windows x86_64
common_init_result: fitting params to device memory, to report bugs during this step use -fit off (or --verbose if you can't)
llama_params_fit_impl: projected to use 11068 MiB of device memory vs. 16050 MiB of free device memory
llama_params_fit_impl: will leave 4210 >= 1024 MiB of free device memory, no changes needed
llama_params_fit: successfully fit params to free device memory
llama_params_fit: fitting params to free memory took 0.71 seconds
llama_model_load_from_file_impl: using device Vulkan1 (NVIDIA GeForce RTX 4090 Laptop GPU) (0000:01:00.0) - 15278 MiB free
llama_model_loader: loaded meta data with 32 key-value pairs and 523 tensors from c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = glm4
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.sampling.top_k i32 = 2
llama_model_loader: - kv 3: general.sampling.top_p f32 = 0.600000
llama_model_loader: - kv 4: general.sampling.temp f32 = 0.800000
llama_model_loader: - kv 5: general.size_label str = 9.4B
llama_model_loader: - kv 6: general.license str = mit
llama_model_loader: - kv 7: general.tags arr[str,1] = ["image-text-to-text"]
llama_model_loader: - kv 8: general.languages arr[str,2] = ["zh", "en"]
llama_model_loader: - kv 9: glm4.block_count u32 = 40
llama_model_loader: - kv 10: glm4.context_length u32 = 131072
llama_model_loader: - kv 11: glm4.embedding_length u32 = 4096
llama_model_loader: - kv 12: glm4.feed_forward_length u32 = 13696
llama_model_loader: - kv 13: glm4.attention.head_count u32 = 32
llama_model_loader: - kv 14: glm4.attention.head_count_kv u32 = 2
llama_model_loader: - kv 15: glm4.rope.dimension_sections arr[i32,4] = [8, 12, 12, 0]
llama_model_loader: - kv 16: glm4.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 17: glm4.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: glm4.rope.dimension_count u32 = 64
llama_model_loader: - kv 19: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 20: tokenizer.ggml.pre str = glm4
llama_model_loader: - kv 21: tokenizer.ggml.tokens arr[str,151552] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,151552] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 23: tokenizer.ggml.merges arr[str,318088] = ["─á ─á", "─á ─á─á─á", "─á─á ─á─á", "...
llama_model_loader: - kv 24: tokenizer.ggml.eos_token_id u32 = 151329
llama_model_loader: - kv 25: tokenizer.ggml.padding_token_id u32 = 151329
llama_model_loader: - kv 26: tokenizer.ggml.eot_token_id u32 = 151336
llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 151329
llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 151329
llama_model_loader: - kv 29: tokenizer.chat_template str = [gMASK]<sop>\n{%- if tools -%}\n<|syste...
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - kv 31: general.file_type u32 = 15
llama_model_loader: - type f32: 281 tensors
llama_model_loader: - type q5_0: 20 tensors
llama_model_loader: - type q8_0: 20 tensors
llama_model_loader: - type q4_K: 181 tensors
llama_model_loader: - type q6_K: 21 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 5.73 GiB (5.24 BPW)
load: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect
←[0mload: printing all EOG tokens:
load: - 151329 ('<|endoftext|>')
load: - 151336 ('<|user|>')
load: special tokens cache size = 36
load: token to piece cache size = 0.9713 MB
print_info: arch = glm4
print_info: vocab_only = 0
print_info: no_alloc = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 4096
print_info: n_embd_inp = 4096
print_info: n_layer = 40
print_info: n_head = 32
print_info: n_head_kv = 2
print_info: n_rot = 64
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 16
print_info: n_embd_k_gqa = 256
print_info: n_embd_v_gqa = 256
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 13696
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: n_expert_groups = 0
print_info: n_group_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 8
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_yarn_log_mul= 0.0000
print_info: rope_finetuned = unknown
print_info: mrope sections = [8, 12, 12, 0]
print_info: model type = 9B
print_info: model params = 9.40 B
print_info: general.name = n/a
print_info: vocab type = BPE
print_info: n_vocab = 151552
print_info: n_merges = 318088
print_info: BOS token = 151329 '<|endoftext|>'
print_info: EOS token = 151329 '<|endoftext|>'
print_info: EOT token = 151336 '<|user|>'
print_info: UNK token = 151329 '<|endoftext|>'
print_info: PAD token = 151329 '<|endoftext|>'
print_info: LF token = 198 '─è'
print_info: FIM PRE token = 151347 '<|code_prefix|>'
print_info: FIM SUF token = 151349 '<|code_suffix|>'
print_info: FIM MID token = 151348 '<|code_middle|>'
print_info: EOG token = 151329 '<|endoftext|>'
print_info: EOG token = 151336 '<|user|>'
print_info: max token length = 1024
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 40 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 41/41 layers to GPU
load_tensors: CPU_Mapped model buffer size = 333.00 MiB
load_tensors: Vulkan1 model buffer size = 5539.00 MiB
.........................................................................................
common_init_result: added <|endoftext|> logit bias = -inf
common_init_result: added <|user|> logit bias = -inf
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 131072
llama_context: n_ctx_seq = 131072
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 500000.0
llama_context: freq_scale = 1
llama_context: Vulkan_Host output buffer size = 0.58 MiB
llama_kv_cache: Vulkan1 KV buffer size = 5120.00 MiB
llama_kv_cache: size = 5120.00 MiB (131072 cells, 40 layers, 1/1 seqs), K (f16): 2560.00 MiB, V (f16): 2560.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: Vulkan1 compute buffer size = 409.02 MiB
llama_context: Vulkan_Host compute buffer size = 264.02 MiB
llama_context: graph nodes = 1487
llama_context: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
←[0mmtmd_cli_context: chat template example:
[gMASK]<sop><|system|>
You are a helpful assistant<|user|>
Hello<|assistant|>
Hi there<|user|>
How are you?<|assistant|>
clip_model_loader: model name:
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 182
clip_model_loader: n_kv: 24
clip_model_loader: has vision encoder
clip_ctx: CLIP using CPU backend
load_hparams: projector: glm4v
load_hparams: n_embd: 1536
load_hparams: n_head: 12
load_hparams: n_ff: 13696
load_hparams: n_layer: 24
load_hparams: ffn_op: silu
load_hparams: projection_dim: 4096
--- vision hparams ---
load_hparams: image_size: 336
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 0
load_hparams: n_merge: 2
load_hparams: n_wa_pattern: 0
load_hparams: image_min_pixels: 6272
load_hparams: image_max_pixels: 3211264
load_hparams: model size: 934.64 MiB
load_hparams: metadata size: 0.06 MiB
warmup: warmup with image size = 1288 x 1288
alloc_compute_meta: CPU compute buffer size = 515.05 MiB
alloc_compute_meta: graph splits = 1, nodes = 632
warmup: flash attention is enabled
main: loading model: c:\Users\user\Desktop\GLM-4.6V-Flash-Q4_K_M.gguf
WARN: This is an experimental CLI for testing multimodal capability.
←[0m For normal use cases, please use the standard llama-cli
←[0mencoding image slice...
image slice encoded in 13919 ms
decoding image batch 1/1, n_tokens_batch = 729
image decoded (batch 1/1) in 401 ms
<think>Got it, let's see. The image has a creature that looks like a dragon or a lizard-like humanoid, wearing an orange robe, holding a staff and a glowing orb. There's text on the image: "not all who wander are lost" in white, and "the mind is a terrible thing to waste" in blue. So I need to describe what's in the image.
First, the character: a dragon-like humanoid (maybe a dragonborn from D&D) in an orange tunic, with a staff, a glowing object in one hand, a sword at the waist. The text is from The Lord of the Rings and a quote about the mind. So I'll describe the visual elements and the text.</think>
The image shows a dragon - like humanoid (with reptilian features, horns, and a tail) dressed in an orange tunic. It holds a glowing orb in one hand and a staff in the other, with a sword at its waist. Text on the image includes ΓÇ£not all who wander are lostΓÇ¥ (in white) and ΓÇ£the mind is a terrible thing to wasteΓÇ¥ (in blue).
llama_perf_context_print: load time = 5443.70 ms
llama_perf_context_print: prompt eval time = 14427.55 ms / 742 tokens ( 19.44 ms per token, 51.43 tokens per second)
llama_perf_context_print: eval time = 3168.82 ms / 231 runs ( 13.72 ms per token, 72.90 tokens per second)
llama_perf_context_print: total time = 18338.98 ms / 973 tokens
llama_perf_context_print: graphs reused = 0
