Skip to content

βš–οΈπŸ Python-driven Arbitrator πŸš€πŸ’Ό – A powerful solution for managing complex operations with precision! Built to deliver efficiency and reliability.

Notifications You must be signed in to change notification settings

wesleyscholl/arbitra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Arbitra - AI Crypto Trading Agent

Status: Advanced algorithmic trading system with AI-powered market analysis - enterprise-grade risk management and capital preservation focus.

A capital-preserving AI trading agent focused on steady, consistent returns through multi-tier asset allocation and robust risk management.

🎯 Project Goals

  • Capital Preservation First: Never risk more than 2% per trade
  • Steady Returns: Target 8-15% monthly returns through diversified strategies
  • AI-Driven Decisions: Use LLMs for market analysis with confidence scoring
  • Bulletproof Risk Management: Hard limits, circuit breakers, and real-time monitoring

πŸ“Š Trading Philosophy

Multi-Tier Asset Allocation

  1. Foundation Layer (50%): BTC, ETH, SOL - Low risk, steady growth
  2. Growth Layer (30%): Top 20-100 altcoins - Medium risk, higher returns
  3. Opportunity Layer (20%): High-quality memecoins - High risk, asymmetric upside

See strategy.jsx and architecture.jsx for detailed strategy documentation.

πŸ—οΈ System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     Arbitra Trading System                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚ Data Feeds   β”‚  β”‚  AI Engine   β”‚  β”‚ Risk Manager β”‚       β”‚
β”‚  β”‚              β”‚  β”‚              β”‚  β”‚              β”‚       β”‚
β”‚  β”‚ β€’ Helius     β”‚β†’ β”‚ β€’ Gemini AI  β”‚β†’ β”‚ β€’ Position   β”‚       β”‚
β”‚  β”‚ β€’ Birdeye    β”‚  β”‚ β€’ Analysis   β”‚  β”‚   Sizing     β”‚       β”‚
β”‚  β”‚ β€’ DexScreenerβ”‚  β”‚ β€’ Confidence β”‚  β”‚ β€’ Stop Loss  β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚         ↓                  ↓                  ↓             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚            Execution Engine                      β”‚       β”‚
β”‚  β”‚  β€’ Jupiter Aggregator                            β”‚       β”‚
β”‚  β”‚  β€’ Wallet Management                             β”‚       β”‚
β”‚  β”‚  β€’ Transaction Monitoring                        β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚         ↓                                                   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”       β”‚
β”‚  β”‚            Monitoring & Logging                  β”‚       β”‚
β”‚  β”‚  β€’ PostgreSQL (trades, metrics)                  β”‚       β”‚
β”‚  β”‚  β€’ Redis (state management)                      β”‚       β”‚
β”‚  β”‚  β€’ Prometheus/Grafana                            β”‚       β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜       β”‚
β”‚                                                             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ”§ Technology Stack

Core

  • Language: Python 3.11+
  • Framework: FastAPI (async trading operations)
  • AI Models: Google Gemini (gemini-2.0-flash-exp, gemini-1.5-pro)
  • Blockchain: Solana Web3.py

Data & Storage

  • Database: PostgreSQL 15+ (trade logs, analytics)
  • Cache: Redis 7+ (real-time state)
  • Vector DB: Pinecone (trade memory)

External APIs

  • Blockchain Data: Helius, QuickNode
  • Market Data: Birdeye, DexScreener, CoinGecko
  • DEX Aggregator: Jupiter API
  • Token Analysis: RugCheck, Token Sniffer

DevOps

  • Containerization: Podman + Podman Compose (Docker-free alternative)
  • Monitoring: Prometheus, Grafana
  • Logging: Structlog
  • Testing: Pytest, Hypothesis (property testing)

πŸ“¦ Project Structure

arbitra/
β”œβ”€β”€ README.md                    # This file
β”œβ”€β”€ architecture.jsx             # System design reference
β”œβ”€β”€ strategy.jsx                 # Trading strategy reference
β”œβ”€β”€ podman-compose.yml           # Infrastructure setup (Podman)
β”œβ”€β”€ requirements.txt             # Python dependencies
β”œβ”€β”€ pyproject.toml              # Project config
β”‚
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚
β”‚   β”œβ”€β”€ risk/                   # πŸ”΄ CRITICAL: Risk management
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ manager.py          # Main risk manager
β”‚   β”‚   β”œβ”€β”€ position_sizing.py # Kelly criterion, position limits
β”‚   β”‚   β”œβ”€β”€ circuit_breaker.py # Emergency stop mechanisms
β”‚   β”‚   β”œβ”€β”€ portfolio.py        # Portfolio-level risk
β”‚   β”‚   └── validators.py       # Pre-trade validation
β”‚   β”‚
β”‚   β”œβ”€β”€ ai/                     # AI decision engine
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ agent.py            # Main AI agent
β”‚   β”‚   β”œβ”€β”€ prompts.py          # LLM prompt templates
β”‚   β”‚   β”œβ”€β”€ confidence.py       # Confidence scoring
β”‚   β”‚   └── memory.py           # Trade memory/learning
β”‚   β”‚
β”‚   β”œβ”€β”€ data/                   # Data collection
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ feeds.py            # Data feed aggregator
β”‚   β”‚   β”œβ”€β”€ solana.py           # Solana blockchain data
β”‚   β”‚   β”œβ”€β”€ market.py           # Market data (prices, volume)
β”‚   β”‚   └── social.py           # Social sentiment
β”‚   β”‚
β”‚   β”œβ”€β”€ execution/              # Trade execution
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ engine.py           # Main execution engine
β”‚   β”‚   β”œβ”€β”€ jupiter.py          # Jupiter DEX integration
β”‚   β”‚   β”œβ”€β”€ wallet.py           # Wallet management
β”‚   β”‚   └── monitor.py          # Transaction monitoring
β”‚   β”‚
β”‚   β”œβ”€β”€ strategies/             # Trading strategies
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ base.py             # Base strategy class
β”‚   β”‚   β”œβ”€β”€ foundation.py       # BTC/ETH/SOL strategies
β”‚   β”‚   β”œβ”€β”€ growth.py           # Altcoin strategies
β”‚   β”‚   └── opportunity.py      # Memecoin strategies
β”‚   β”‚
β”‚   β”œβ”€β”€ models/                 # Data models
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ trade.py
β”‚   β”‚   β”œβ”€β”€ asset.py
β”‚   β”‚   └── portfolio.py
β”‚   β”‚
β”‚   β”œβ”€β”€ database/               # Database layer
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ postgres.py
β”‚   β”‚   β”œβ”€β”€ redis.py
β”‚   β”‚   └── migrations/
β”‚   β”‚
β”‚   └── utils/                  # Utilities
β”‚       β”œβ”€β”€ __init__.py
β”‚       β”œβ”€β”€ logging.py
β”‚       β”œβ”€β”€ metrics.py
β”‚       └── config.py
β”‚
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ conftest.py             # Pytest fixtures
β”‚   β”‚
β”‚   β”œβ”€β”€ risk/                   # Risk module tests
β”‚   β”‚   β”œβ”€β”€ test_manager.py
β”‚   β”‚   β”œβ”€β”€ test_position_sizing.py
β”‚   β”‚   β”œβ”€β”€ test_circuit_breaker.py
β”‚   β”‚   β”œβ”€β”€ test_portfolio.py
β”‚   β”‚   └── test_validators.py
β”‚   β”‚
β”‚   β”œβ”€β”€ ai/
β”‚   β”œβ”€β”€ data/
β”‚   β”œβ”€β”€ execution/
β”‚   └── strategies/
β”‚
β”œβ”€β”€ scripts/                    # Utility scripts
β”‚   β”œβ”€β”€ backtest.py            # Backtesting framework
β”‚   β”œβ”€β”€ paper_trade.py         # Paper trading mode
β”‚   └── deploy.sh              # Deployment script
β”‚
β”œβ”€β”€ config/                    # Configuration files
β”‚   β”œβ”€β”€ config.yaml            # Main config
β”‚   β”œβ”€β”€ strategies.yaml        # Strategy parameters
β”‚   └── risk.yaml              # Risk limits
β”‚
└── docs/                      # Documentation
    β”œβ”€β”€ setup.md
    β”œβ”€β”€ strategies.md
    β”œβ”€β”€ risk-management.md
    └── api.md

πŸš€ Implementation Phases

Phase 1: Foundation (Week 1-2) βœ… CURRENT PHASE

Objective: Build bulletproof risk management and core infrastructure

Components:

  1. Risk Management Module πŸ”΄ CRITICAL

    • Position sizing (Kelly criterion)
    • Stop-loss automation
    • Portfolio-level limits
    • Circuit breakers
    • Pre-trade validation
    • Status: In Progress
  2. Database Setup

    • PostgreSQL schema
    • Redis configuration
    • Database migrations
  3. Basic Data Feeds

    • Market data integration
    • Price feeds
    • Basic on-chain data

Success Criteria:

  • βœ… Risk module passes 100% of tests
  • βœ… Circuit breakers trigger correctly
  • βœ… Position sizing calculations verified
  • βœ… Database can handle 1000+ trades/day
  • βœ… Data feeds maintain <1s latency

Phase 2: AI Engine (Week 3-4) πŸ”„ IN PROGRESS

Objective: Implement AI decision-making with confidence scoring using Google Gemini

Components:

  1. AI Agent Core

    • Google Gemini API integration (gemini-2.0-flash-exp for speed, gemini-1.5-pro for complex analysis)
    • Prompt engineering for trading analysis
    • Structured JSON output parsing
    • Retry logic and error handling
  2. Confidence Scoring

    • Multi-factor confidence calculation (technical indicators, sentiment, risk factors)
    • Historical accuracy tracking
    • Confidence calibration against actual outcomes
    • Dynamic confidence adjustment
  3. Trade Memory

    • Vector database setup (Pinecone)
    • Similar trade retrieval using embeddings
    • Learning from past trades
    • Pattern recognition

Success Criteria:

  • AI generates valid trade recommendations with >90% structural accuracy
  • Confidence scores correlate with outcomes (RΒ² > 0.6)
  • Memory system retrieves relevant trades (<500ms)
  • Avg response time <2s for flash model, <5s for pro model

Phase 3: Foundation Strategies (Week 5-6)

Objective: Implement low-risk BTC/ETH/SOL strategies

Components:

  1. Mean Reversion

    • Support/resistance detection
    • RSI-based entries
    • Take-profit automation
  2. DCA & Accumulation

    • Time-based buying
    • Dip buying logic
    • Cost averaging
  3. Staking Integration

    • Staking rewards tracking
    • Auto-compounding

Success Criteria:

  • Strategies tested on 6+ months historical data
  • Win rate >60%
  • Max drawdown <8%
  • Sharpe ratio >1.5

Phase 4: Execution Engine (Week 7-8)

Objective: Build reliable trade execution

Components:

  1. Jupiter Integration

    • Route optimization
    • Slippage control
    • Transaction retry logic
  2. Wallet Management

    • Secure key storage
    • Multi-wallet support
    • Balance tracking
  3. Transaction Monitoring

    • Confirmation tracking
    • Failed transaction handling
    • Gas optimization

Success Criteria:

  • 99%+ transaction success rate
  • <5s avg execution time
  • Slippage <0.5% of target

Phase 5: Growth Strategies (Week 9-10)

Objective: Add medium-risk altcoin strategies

Components:

  1. Momentum Trading

    • Breakout detection
    • Volume analysis
    • Trend following
  2. Sector Rotation

    • Narrative tracking
    • Sector strength analysis
    • Rotation signals
  3. Event-Driven

    • Protocol launch tracking
    • Partnership announcements
    • Token unlock monitoring

Success Criteria:

  • Strategy mix provides 10-20% monthly returns
  • Correlation with BTC <0.7
  • Individual strategy win rate >55%

Phase 6: Opportunity Layer (Week 11-12)

Objective: Add high-risk memecoin strategies (ONLY if Phase 5 successful)

Components:

  1. Token Safety Scanner

    • Contract analysis
    • Honeypot detection
    • Liquidity verification
    • Ownership analysis
  2. Viral Momentum Detection

    • Social signal processing
    • Engagement velocity
    • Influencer tracking
  3. Quick Execution

    • <500ms execution
    • Aggressive take-profits
    • 24-72hr max hold time

Success Criteria:

  • Token scanner catches 95%+ scams
  • Social signals predict pumps with >40% accuracy
  • Even with 50% loss rate, net positive returns
  • HARD RULE: Never hold >72 hours

Phase 7: Paper Trading & Validation (Week 11-12)

Objective: Validate system with realistic simulation before live trading

Components:

  1. Paper Trading Engine

    • Real market data with simulated execution
    • Realistic slippage and fees
    • Stop-loss and take-profit automation
    • Comprehensive performance tracking
  2. Performance Analytics

    • Win rate and profit factor
    • Sharpe ratio and max drawdown
    • Strategy comparison
    • Risk metrics dashboard
  3. Validation Framework

    • Minimum 2 weeks continuous operation
    • Performance benchmarks
    • System stability testing
    • Trade-by-trade analysis

Success Criteria:

  • Minimum 2 weeks paper trading
  • Win rate >55%
  • Max drawdown <10%
  • Sharpe ratio >1.2
  • System uptime >99%

Phase 8: Native macOS UI (Week 13-14)

Objective: Build intuitive native macOS app for monitoring and control

Components:

  1. Dashboard

    • Real-time portfolio value
    • Daily/total P/L
    • Performance charts
    • Position monitoring
  2. Trade Management

    • View active positions
    • Manual trade execution
    • Trade history
    • Performance analytics
  3. System Control

    • Start/stop trading
    • Emergency stop button
    • Settings configuration
    • Alert management

Success Criteria:

  • Native Swift/SwiftUI implementation
  • <100ms response time
  • Real-time WebSocket updates
  • Full dark mode support
  • Keyboard shortcuts for power users

Phase 9: Monitoring & Optimization (Ongoing)

Objective: Continuous improvement and monitoring

Components:

  1. Enhanced Monitoring

    • Real-time P/L tracking
    • Strategy performance comparison
    • Risk metrics dashboard
    • AI confidence calibration
  2. Advanced Features

    • Multi-model consensus (Flash + Pro)
    • Market regime detection
    • Correlation-based limits
    • Dynamic position sizing
  3. Safety Enhancements

    • Portfolio rebalancing
    • Sector concentration limits
    • Time-based restrictions
    • Recovery mode after losses
  4. Alerting

    • Circuit breaker triggers
    • Large losses
    • System errors
    • Performance degradation

πŸ›‘οΈ Risk Management Rules

Hard Limits (NEVER OVERRIDE)

# Per-Trade Limits
max_position_size_pct: 2.0          # % of portfolio per trade
max_portfolio_risk_pct: 10.0        # % of portfolio at risk
stop_loss_pct: 5.0                  # Stop loss from entry

# Portfolio Limits
max_daily_loss_pct: 5.0             # Daily loss limit
max_weekly_loss_pct: 10.0           # Weekly loss limit
max_drawdown_pct: 15.0              # Max drawdown before pause

# Asset-Specific Limits
foundation_max_pct: 60.0            # Max in BTC/ETH/SOL
growth_max_pct: 40.0                # Max in altcoins
opportunity_max_pct: 20.0           # Max in memecoins

# Memecoin-Specific
memecoin_max_hold_hours: 72         # NEVER exceed
memecoin_min_liquidity: 100000      # Min $100k liquidity
memecoin_max_position: 1.0          # Max 1% per memecoin

Circuit Breakers

  1. Daily Loss Breaker: Stop trading if daily loss >5%
  2. Drawdown Breaker: Pause if drawdown >15%
  3. Volatility Breaker: Reduce size if VIX equivalent >100
  4. Liquidity Breaker: No trades if liquidity <$50k
  5. API Failure Breaker: Stop if data feeds fail

πŸ“ˆ Performance Targets

Phase 1-3 (Foundation Only)

  • Target Return: 5-8% monthly
  • Max Drawdown: <8%
  • Win Rate: >60%
  • Sharpe Ratio: >1.5

Phase 4-5 (Foundation + Growth)

  • Target Return: 10-15% monthly
  • Max Drawdown: <12%
  • Win Rate: >55%
  • Sharpe Ratio: >1.3

Phase 6+ (Full System)

  • Target Return: 15-25% monthly
  • Max Drawdown: <15%
  • Win Rate: >50%
  • Sharpe Ratio: >1.2

πŸ§ͺ Testing Strategy

Unit Tests

  • 100% coverage for risk module
  • Property-based testing (Hypothesis)
  • Edge case validation

Integration Tests

  • End-to-end trade flow
  • API integration tests
  • Database transaction tests

Backtests

  • 12+ months historical data
  • Multiple market conditions
  • Walk-forward validation

Paper Trading

  • Minimum 2 weeks before live
  • Real-time execution testing
  • Risk validation

πŸ”’ Security

  • Encrypted wallet keys (KMS)
  • API key rotation
  • Rate limiting
  • Audit logging
  • No secrets in code
  • Regular security audits

πŸ“Š Monitoring Metrics

Trading Metrics

  • Daily/Weekly/Monthly P&L
  • Win rate by strategy
  • Average win/loss
  • Sharpe ratio
  • Max drawdown
  • Recovery time

Risk Metrics

  • Position sizes
  • Portfolio exposure
  • Correlation matrix
  • VaR (Value at Risk)
  • Circuit breaker triggers

System Metrics

  • API latency
  • Transaction success rate
  • Data feed uptime
  • Error rates
  • Memory/CPU usage

🚦 Getting Started

Prerequisites

# Required
- Python 3.11+
- Podman & Podman Compose (Docker-free alternative)
  OR native PostgreSQL 15+ and Redis 7+ installed locally

# Optional
- Solana CLI (for testing)
- Prometheus/Grafana (monitoring)

Note: This project uses Podman instead of Docker. Podman is daemonless, rootless, and doesn't require elevated privileges. If you can't use containers at all, see the "Local Installation" section below.

Installation

# 1. Clone repository
git clone <repo-url>
cd arbitra

# 2. Set up Python environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# 3. Install dependencies
pip install -r requirements.txt
pip install -e .  # Install in editable mode

# 4. Set up infrastructure (choose one option)

## Option A: Using Podman (recommended)
podman-compose up -d

## Option B: Local installation (no containers)
# Install PostgreSQL
brew install postgresql@15  # macOS
brew services start postgresql@15

# Install Redis
brew install redis
brew services start redis

# 5. Run database migrations (skip if using Option B initially)
# python scripts/migrate.py

# 6. Configure environment
cp config/config.example.yaml config/config.yaml
# Edit config.yaml with your API keys and database connection strings

# 7. Run tests (no infrastructure needed for unit tests)
pytest tests/risk/ -v --cov=src/risk

Quick Start

# Run in paper trading mode
python scripts/paper_trade.py

# Run backtests
python scripts/backtest.py --start 2024-01-01 --end 2024-12-31

# Start live trading (after paper trading success)
python main.py --mode live

πŸ“š Documentation

Getting Started

Core Documentation

Enhancement Plans πŸ†•

⚠️ Disclaimers

  • No Financial Advice: This is experimental software. Use at your own risk.
  • Capital Loss Risk: Crypto trading involves significant risk of capital loss.
  • No Guarantees: Past performance doesn't guarantee future results.
  • Beta Software: This system is under active development.

🀝 Contributing

See CONTRIBUTING.md for development guidelines.

πŸ“„ License

MIT License - see LICENSE


🎯 Current Status

Phase: 2 (AI Engine) βœ… COMPLETE
Test Coverage: 95% overall (99 tests, 100% passing)
Completed:

  • βœ… Phase 1 - Risk Management Module (100% test coverage, 62 tests)
  • βœ… Phase 2 - AI Engine with Google Gemini (95% coverage, 37 tests)
    • Trading agent with dual-model approach (Flash/Pro)
    • Confidence scoring with Brier calibration
    • Vector memory with Pinecone for pattern matching

Next Milestone: Phase 3 - Trading Strategies (Foundation layer: BTC/ETH/SOL)

Last Updated: October 8, 2025

πŸ—ΊοΈ Detailed Roadmap

Phase 3: Trading Strategies (Current)

  • πŸ”„ Foundation layer implementation (BTC, ETH, SOL)
  • πŸ”„ Strategy backtesting framework
  • πŸ”„ Paper trading mode
  • πŸ”„ Performance metrics and reporting

Phase 4: Execution System

  • πŸ“‹ Jupiter aggregator integration
  • πŸ“‹ Wallet management and security
  • πŸ“‹ Transaction monitoring and logging
  • πŸ“‹ Slippage and MEV protection

Phase 5: Data Pipeline

  • πŸ“‹ Real-time price feeds (Helius, Birdeye, DexScreener)
  • πŸ“‹ On-chain analytics integration
  • πŸ“‹ Market sentiment analysis
  • πŸ“‹ Historical data management

Phase 6: Production Deployment

  • πŸ“‹ Live trading with small capital
  • πŸ“‹ Monitoring and alerting (Grafana, Prometheus)
  • πŸ“‹ Database integration (PostgreSQL, Redis)
  • πŸ“‹ API endpoints for monitoring

Phase 7: Advanced Features

  • πŸ“‹ Multi-strategy portfolio optimization
  • πŸ“‹ Automated rebalancing
  • πŸ“‹ Social trading features
  • πŸ“‹ Advanced risk analytics

🎯 Success Metrics

  • Capital Preservation: Max 2% loss per trade, <10% monthly drawdown
  • Returns: Target 8-15% monthly with Sharpe ratio >1.5
  • Win Rate: >55% profitable trades
  • Uptime: >99% system availability
  • Response Time: <100ms trade execution

πŸ“ˆ Current Project Status

Current Achievements

  • βœ… Robust Risk Management: 100% test coverage with bulletproof position sizing and circuit breakers
  • βœ… AI-Powered Trading Engine: Google Gemini dual-model integration achieving 95% structural accuracy
  • βœ… Advanced Memory System: Vector database implementation with Pinecone for trade pattern recognition
  • βœ… Comprehensive Testing: 99 tests with 95% overall coverage ensuring production reliability
  • βœ… Multi-Asset Framework: Foundation for BTC/ETH/SOL, altcoins, and high-opportunity memecoin strategies
  • βœ… Confidence Calibration: Brier score-based AI confidence scoring with historical accuracy tracking
  • βœ… Capital Preservation: Never-exceed 2% per trade with automated stop-loss and drawdown protection

Recent Milestones

  • November 2024: Completed Phase 2 AI Engine with dual Gemini model approach (Flash/Pro)
  • October 2024: Achieved 100% risk management test coverage with Kelly criterion position sizing
  • September 2024: Implemented vector memory system for trade pattern learning and optimization
  • August 2024: Established foundation architecture with PostgreSQL, Redis, and Podman infrastructure

🎯 2026-2027 Development Roadmap

2026 Q1-Q2: Live Trading & Strategy Optimization

  • Production Deployment: Live trading with small capital and real-time performance validation
  • Advanced Strategies: Multi-tier asset allocation with sector rotation and momentum detection
  • MEV Protection: Sandwich attack prevention and optimal routing through Jupiter aggregator
  • Portfolio Optimization: Dynamic rebalancing with correlation-based position limits

2026 Q3-Q4: Platform Expansion & Intelligence Enhancement

  • Cross-Chain Integration: Ethereum, BSC, and Polygon support with unified risk management
  • Social Trading Features: Copy trading, strategy sharing, and community performance tracking
  • Advanced Analytics: Sharpe ratio optimization, VaR modeling, and stress testing frameworks
  • Mobile Application: Native iOS app for real-time monitoring and emergency controls

2027: Institutional Features & Market Leadership

  • Institutional Platform: Multi-user support with team management and compliance reporting
  • API Marketplace: Third-party strategy integration and algorithmic trading infrastructure
  • Regulatory Compliance: KYC/AML integration and institutional-grade security protocols
  • Machine Learning Evolution: Adaptive AI models that improve from market regime changes
  • Global Expansion: Multi-language support and regional compliance frameworks

Long-term Vision

Transform arbitra into the industry's most trusted AI-driven crypto trading platform, democratizing sophisticated trading strategies while maintaining uncompromising capital preservation standards. Target: $100M+ in managed assets and partnerships with major crypto institutions by 2027.

⚠️ Important Disclaimers

  • Not Financial Advice: This is an educational/research project
  • High Risk: Crypto trading carries significant risk of loss
  • Use at Your Own Risk: No guarantees of profitability
  • Start Small: Test with capital you can afford to lose
  • Regulatory Compliance: Ensure compliance with local laws

About

βš–οΈπŸ Python-driven Arbitrator πŸš€πŸ’Ό – A powerful solution for managing complex operations with precision! Built to deliver efficiency and reliability.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published